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Abstract-A thin elastic tube, when inflated, first expands to a cylindrical shape. After some
deformation, this is interrupted by the development of a bulge somewhere along the length of the
tube. For some rubber materials, the bulge initially grows with decreasing pressure, whereas the
rest of the tube unloads. After growing to a certain diameter, the bulge starts spreading axially.
This can occur at a well defined value of pressure which is much lower than the pressure required
to initiate the bulge. The mechanisms through wbich the bulge is initiated, its initial growth and its
eventual propagation along the length of the tube are studied experimentally and analytically.
The results vividly illustrate localization and propagation types of instabilities which govern the
mechanical behavior of a variety of solids and structures.
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undeformed tube cross-sectional area
axial force
undeformed and deformed tube wall thicknesses
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bulge initiation pressure
bulge propagation pressure
undeformed and deformed radii
undeformed and deformed meridional coordinates
principal stress resultants
perturbation displacements
deformed and undeformed volumes enclosed by membrane
strain energy density functions
radial imperfection amplitude
material constants
membrane principal curvatures
stretch ratio
meridional stretch ratio
azimuthal stretch ratio
..1. 2 at bulge crown point
rubber initial shear modulus
material constants
true stress
angle [COS-I (dz/ds)]
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INTRODUCTION

The inflation of a thin-walled, elastic, cylindrical tube is a problem which vividly illustrates
the initiation ofa localized instability and the mechanism through which this is transformed
into an instability that propagates. As the tube is inflated, it first expands radially and
axially in a uniform fashion. However, the extent to which the tube can grow uniformly is
limited. The cylindrical configuration becomes unstable, and a local bulge appears some
where along the length of the tube. The bulge initially grows while the pressure inside the
tube drops. Because of the dropping pressure, the sections of the tube away from the bulge
experience unloading. This type of behavior is known as localization (see Tvergaard and
Needleman, 1980, for a broad discussion of structural problems with this behavior). If the
pressure is prescribed, the longitudinal growth of the bulge is unstable. However, under
volume control loading, the longitudinal growth can occur in a steady state fashion at a
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well defined value of pressure. The pressure required to maintain quasi-static propagation
of the bulge is known as propagation pressure (Pp). This pressure is usually much lower
than that required to initiate the bulge (initiation pressure, PJ The bulge continues to grow
axially until the whole length of tube is inflated. Inflation beyond this point again results
in cylindrical expansion of the tube, which occurs in a stable (increasing load) fashion.

An indication that this particular structure can be expected to have a rather complex
behavior is obtained from the nature of the response calculated if the tube is limited to
deform in a strictly cylindrical fashion. The pressure-volume response calculated with this
restriction, for a particular latex rubber tube, is shown in Fig. la. The pressure sharply rises
to a maximum (local) value; it then drops to a minimum (local) value, and it then gradually
rises again. The circumferential true stress in the cylindrical membrane is proportional to
the applied pressure P, to the square of the induced azimuthal stretch )'2 and to the axial
stretch )'1' These, and the nature of the material stress~strain behavior shown in Fig. Ib,
limit the maximum pressure that can be initially sustained by the tube (much like the area
reduction and the relatively small modulus of many structural materials in the plastic range
which limit the maximum load that can be applied to a bar under uniaxial tension). In a
cylindrically deforming tube, the deformation and stress continue to grow monotonically
after the pressure maximum, but with a decreasing pressure. At higher values of defor
mation, the material response stiffens again. Further increase in stress and deformation
again requires higher pressure, resulting in the upturn observed in the pressure-volume
response. If axial tension is applied simultaneously, the pressure required for inflation is
lower but the other features of the response remain the same.

Chater and Hutchinson (1984) showed how the propagation pressure can be obtained
from a simple, but exact, energy consideration of the steady state propagation process
(Maxwell construction). The issue was further explored in a follow-up paper (see Kyriakides
and Chang, 1990) by the present authors, in which the effect of axial load was also included.
The propagation pressure predicted by this method for the example discussed is included
in Fig. la.
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Fig. la. Pressure-volume response of cylindrically inflated latex rubber tube (Pe calculated by
Maxwell construction).
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The presence of a load maximum in the response indicates that an instability which
can lead to localized deformation is possible. Indeed, it will be shown that the initiation
and initial growth of the bulge is qualitatively similar to the initiation and initial growth of
a neck in metal bars in tension (see Chen, 1971; Needleman, 1972). Of course, in the case
of metals, the growth of the neck is interrupted due to fracturing.

The longitudinal spreading of the bulge and its development into a propagating insta
bility is qualitatively similar to the phenomena of propagating buckles encountered in long
metal cylindrical shell structures such as pipelines (see Palmer and Martin, 1975; Kyriakides
and Babcock, 1981; Chater and Hutchinson, 1984; Kyriakides et ai., 1984) and tunnel
liners (Kyriakides, 1986). The mechanisms of initiating and propagating necks in polymeric
rods (and other geometries) are also qualitatively similar (G'Sell et ai., 1983; Hutchinson
and Neale, 1983; Neale and Tugcu, 1985). Materials which undergo load-induced phase
transformations have a similar phenomenological behavior (see Krishnan and Brown,
1973).

Because of the similarity of its mechanical behavior to those of the practical problems
mentioned, and, in view of the relative simplicity of the experimental and analytical efforts
required for its study, the problem of inflating a rubber tube is ideal as a model for
demonstrating localization and propagation types of instabilities. This paper presents the
results of combined experimental and analytical efforts which examine the mechanism
through which an inflated and extended elastic tube first becomes unstable, how the bulge
forms, and how it develops into a propagating instability.

EXPERIMENTS

A series of experiments were conducted in order to observe and record the onset of
instability and the formation of a localized bulge during the inflation of elastic tubes. The
experiments were conducted on commercially available natural rubber latex tubes. The
tubes had a nominal outside diameter of 0.50 in. (12.7 mm), wall thickness of 0.063 in.
(1.60 mm) and lengths that ranged between 5 and 36 tube diameters. The experimental set
up used is shown schematically in Fig. 2. One end of the tube was clamped to a rigid
manifold while the other was sealed but left free. Axial load was applied by connecting the
free end to a hanging, calibrated weight with a fine, flexible cable.

The tube and all accessories connected to it were filled with water, taking care to keep
any trapped air (bubbles) to a minimum. The effect of the weight of the water inside the
tube was negated by immersing the tube in water. This was achieved by placing the simple
text fixture in a bath of water as shown in Fig. 2. The walls of the bath are transparent to
allow observation of the experiment.

A positive displacement precision metering pump was used to inflate the tube. The
pumping rate used delivered 0.062 Vo s- I, where Vo is the initial internal volume of each test
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Fig. 2. Experimental set-up.



1088 S. KYRIAKIDES and YU-CHUNG CHANG

Latex Tube

b

Strip Chart Recarder

(
I

Videa

IAnalyzer

I
l-J Platter

Monitor

Fig. 3. Experiment monitoring and data acquisition systems.

specimen; i.e. as the length of the test specimens varied, the pump was adjusted to deliver
approximately the same volume ratio per second. This was done in order to have some parity
in loading rate (at least up to the onset of instability) between the different experiments.
A one-way valve was used at the inlet of the manifold to reduce the possibility of backflow
at all times. This water supply arrangement is considered to represent a good approximation
of a volume control loading condition.

A high resolution video system was used to monitor and record the deformed con
figurations of the tube during inflation. Events were recorded at the rate of 30 frames s I.

The pressure in the tube was monitored with a calibrated pressure transducer. The trans
ducer output was recorded on a common time base with the video recording. The monitoring
and recording set up used are shown in Fig. 3.

A video analyzer was used to obtain specific dimensional measurements from the
recorded configuration history. These were matched with the corresponding pressure
measurements. The pressure measurements had an uncertainty of0.5% and the dimensional
measurements had an uncertainty of 1%. The time base used had an uncertainty of
approximately 3%.

Material properties
Independent experiments were conducted in order to measure properties of the latex

tubes used in the inflation experiments. Details of the experimental procedure followed can
be found in Kyriakides and Chang (1990). The results were used to obtain material constants
for the strain energy density function suggested by Ogden (1972) and given by

3

W = L Iln()o~" +At' + A)n - 3)!an,
n= 1

(1)

where Ai are the principal stretches and an and Iln are material constants. The material was
assumed to be incompressible and the following values of an and Iln were found to best fit
the measured material responses:

III = 89.4 psi (617kPa),

112 = 0.270 psi (1.86 kPa),

113 = - 1.42 psi (- 9.79 kPa),

al = 1.30,

a2 = 5.08,

a3 = -2.00. (2)
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The initial shear modulus of the material is given by

3

Il = ~ L IlnrLn = 60.4 psi (416 kPa).
n=l

1089

(3)

~xperitnentalresults

A typical set of experimental results is shown in Fig. 4. The case shown involved a
tube of length LjR = 20.6 (length of tube = 2L, diameter = 2R). A constant axial load of
FjllA = 0.383 (A = initial cross-sectional area of tube) was applied during the inflation
process. The initial part of the pressure-time history recorded and a sequence of tube
configurations obtained from the video are shown in the figure. The pressure corresponding
to each tube configuration is marked on the pressure-time recording. The following
sequence of events was observed during the experiment: at the early stages of the inflation
process the tube deformed essentially uniformly (except at the ends), growing both diame
trically as well as axially. At first the pressure rose sharply with time but the rate of
increase gradually decreased until a maximum value was reached. Very close to the pressure
maximum, a localized bulge developed somewhere along the length of the tube. With the
appearance of the bulge the pressure in the tube started to drop. The initial pressure drop
was sudden (indicated by a dashed line in Fig. 4) but, eventually, the deformation process
returned to a controlled quasi-static rate of growth. The sudden jump can be explained as
follows. The downturn in pressure caused unloading in most of the tube except in the bulged
section, which continued to grow monotonically. As a result of the unloading experienced
by the cylindrical sections of the tube, the volume enclosed must be reduced. In the bulged
region the enclosed volume increased. In the experiments, the volume of fluid inside the test
specimen was prescribed. As a result, if the tube was short enough, so that the volume
increase in the bulge was larger than the volume decrease in the cylindrical ends, the
unloading could occur in a controlled fashion; i.e., without jumps in deformation (this is
only possible for tubes with an initial length of a few diameters). If the tube was longer, so
that the opposite was true, the initial unloading occurred dynamically as the structure
"snapped" to a configuration which had the same internal volume. The longer the initial
length of the tube, the greater the jump and the less controlled the deformation process.
This issue will be further discussed with the help of the numerical results presented in later
sections.

Continued pumping of water into the tube caused growth of the bulge, as shown in
Fig. 4. At the same time, the pressure dropped gradually and asymptotically approached a
steady state value. The bulge eventually stopped growing diametrically and started growing
axially. During the axial spreading of the bulge, the shape of the transition between the
inflated and "uninflated" sections was maintained and the pressure remained constant. This
constant value of pressure is known as the bulge propagation pressure (see Chater and
Hutchinson, 1984; Kyriakides and Chang, 1990). Configuration 10 in Fig. 4 is at this
pressure.

Once this steady state condition was reached, the experiment was accelerated by
increasing the pumping rate by a factor of 3. The bulge gradually spread over the whole
length of the tube. Inflation beyond this point resulted in cylindrical expansion of the whole
tube (i.e., diametrical and axial expansion) at increasing values of pressure. The experiment
was usually terminated at this stage.

A series of similar experiments was conducted in which the length of the tube and the
applied axial load were varied. Representative results obtained from these experiments are
shown in Figs Sa and 6a. Figure Sa shows a set of measured pressure-radial stretch ratio
P'ld responses for four different tube lengths. In the experimental results, Ale is the stretch
ratio of the outer surface of the tube at the crown-point of the bulge. The applied axial
force was FjIlA = 0.383. In each case, the part of the response which occurred dynamically
is indicated with a dashed line, as the recorded pressure values are not dependable. The
response for the shortest of the four tubes (LjR = 6.86) does not have a discontinuity for
the reasons discussed above. In the other three responses, the discontinuity is seen to
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increase with the tube length. We also observe that the response for the shortest tube is
somewhat higher than the other three, which appear to be almost coincident.

Figure 6a shows a set of pressure--erown point stretch ratio responses for tubes which
had a length of L/R = 20.6 for four different values of axial load F. The axial load reduces
the value of the pressure maximum and similarly reduces the value of the propagation
pressure as reported in Kyriakides and Chang (1990). In addition, the pressure drop at the
discontinuity is seen to decrease with tension.

In order to investigate the effect of test specimen length on the initial postbuckling
behavior of the tube (i.e., on the geometry of the bulge at its early stages), the profiles of
bulges from tubes with lengths of L/R = 6.86,13.7,20.6 and 27.5 are compared in Fig. 7.
The axial load applied in the four experiments was F/flA = 1.148. In addition, the bulge
crown point has a radial stretch ratio of )'2C = 2.36 for all cases. An image processing
system consisting ofa Grinnell 270 display system coupled with a VAX-IDL data processing
system was used to reduce the video data. The "roughness" appearing on the surface of
each bulge is due to resolution limitations of the recording and processing systems. Although
the four profiles shown in Fig. 7 have some minor differences, their general dimensions and
shapes are very similar. It seems that although the initiation of each bulge may depend on
the length of the test specimen, the eventual bulge shape is independent of the specimen
length. We also note that for longer tubes the bulge shape was found to be independent of
the axial position at which it occurred.

The shape of the bulge was found to be significantly altered by axial load. This
difference is illustrated in Fig. 8 where bulge profiles with the same crown point radial
stretch ratios P.2C = 2.36) are shown for values of axial load of F/flA = 0.383, 0.766, 1.149
and 1.531. The four test specimens had a length of L/R = 20.6.

ANALYSIS

We consider an elastic, circular cylindrical membrane which has an initial radius R,
wall thickness H and length 2L. The cylinder is closed at the two ends with rigid plates of
radius R. The closed tube is pressurized internally with a fluid pressure P which causes
radial expansion and axial stretching. An additional external axial tensile load F is applied
at the rigid closures. We limit our attention to deformations which are axisymmetric as well
as symmetric about the cylinder mid-span. We adopt the coordinates (R, Z) and (r, z) for
the undeformed and deformed configurations respectively, as shown in Fig. 9. In addition,
Sand s represent measures of length along the undeformed and deformed meridians
respectively, and w is the angle between the normal to the deformed membrane and the
radial direction.

Membranes with small, axisymmetric deviations from the circular cylindrical shape
will also be considered; thus, in general

R = R(Z). (4)

The governing equations for finite deformations of axisymmetric membranes can be
found in Green and Adkins (1960) and are summarized below. The deformed geometry is
described by

dr .
ds = sm w,

dz
ds = -cos w, (5)

and the principal curvatures KI and K2 are given by

dw
KI = - and

ds

cos W
KJ = ------

- r
(6)
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The principal stretches for incompressible membrane material are

ds
dS'

and (7)

We denote the stress resultants in the meridional and azimuthal directions by T, and T 2

respectively. The equilibrium equations can be expressed as follows:

(8a)
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The material is assumed to possess a strain energy density function given by

1095

(8b)

(9)

In the calculations that follow we adopt the form of Wproposed by Ogden (1) with the
constants measured experimentally (2). Using (9), the stress resultants can be related to the
principal stretches as follows:

(10)

where W:. == OWIOA•.
Due to their complexity, eqns (5)-(10) must be solved numerically. It was found to be

convenient to rearrange them into the following system of ordinary differential equations:

dz , S'dZ = -A.I cos W , (11)

where R' == dRldZ and S' == dS/dZ.
In developing these equations dPldZ = °was used and the value of F is assumed to

be prescribed. The boundary conditions appropriate for the problem are as follows:

W(O) = 0, z(O) = 0, A2(L) = 1 and A2(0) = A~ or z(L) = 1*, (12)

where A! and 1* are prescribed quantities. For every prescribed value of A! (or 1*), eqns
(11) with boundary conditions (12) constitute a two-point boundary value problem which
was solved numerically. The method adopted (developed by Pereyra, 1979) uses a finite
difference scheme to discretize the problem domain, and Newton's method to solve the
resultant set of nonlinear algebraic equations. For every converged solution (AI (2), A2(2),
w(2), z(2», °~ Z ~ L, the value of pressure required for equilibrium can be evaluated
from (8a) using the values of the variables at anyone of the difference points. The volume
enclosed by the axisymmetric membrane can be found as follows:

(13)

During the initial stages of the loading, ..1.! was prescribed incrementally. The tube initially
grows in a nearly cylindrical fashion. After some deformation, a localized bulge forms at the
mid-span of the cylinder. At first the bulge grows radially, until some value of )'2(0) is
reached, and then starts to grow axially while its diameter remains unchanged. This con
tinues until the whole length of the cylinder is inflated, as observed in the experiments.
During this part of the loading history, the half length of the tube, 1*, was prescribed as it
experiences monotonic growth (an alternative "loading" parameter to 1* is the volume v
enclosed by the membrane).
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Bifurcation analysis
The initial onset of instability of uniformly extended and inflated elastic tubes can be

established by considering the linearized equilibrium equations of perturbations about the
uniform state. The stability of circular cylindrical membranes has been extensively studied
by Corneliussen and Shield (1961), Shield (1971,1972), Haughton and Ogden (1979) and
others, for a variety of loads and boundary conditions. Fourney and Stern (1968) examined
the stability of the corresponding shell problem, whereas Haughton and Ogden (1979)
considered the stability of similarly-loaded thick-walled elastic cylinders. Based on the
results in the last two references, the influence of bending and other thick wall effects on
the onset of instability is relatively small except in very thick tubes. We thus continue to
treat the tube as a thin, elastic, incompressible membrane and directly adopt the method
and formulation of Shield (1971, 1972).

We again consider a cylinder of initial radius R, wall thickness H and length 2L. One
end of the cylinder is fixed and the other is closed with a rigid, circular plate of radius R,
which is free to move axially. The cylinder is inflated with an incompressible fluid in a
volume control fashion. As before, a constant axial force F is applied at the free end. These
loads cause uniform extension to a length 2)~IL and expansion to a radius of A2R (i.e. in
the bifurcation analysis the effect of the boundary restraints is assumed to be negligible for
long cylinders). The principal stress resultants can be obtained from (8) and are

(14a)

and

(14b)

We consider the possibility of alternative, noncylindrical but axisymmetric equilibrium
states by perturbing the inflated cylinder such that:

where u(Z), w(Z) are displacement components representing the perturbation. Shield (1972)
calculated the potential energy of the perturbed state to second order in u and w. Following
his methodology it can be shown that the onset of instability occurs when the following
functional has its minimum value:

(15)

where A is a Lagrange multiplier. The values of ai and some details on the results of (15)
can be found in the Appendix.

PREDICTIONS AND DISCUSSION

Bifurcation instabilities
The bifurcation criterion (A3) was used to calculate the onset of instability of the tubes

used in the experiment. The initial radius R of the cylindrical membrane was assumed to
be equal to the mean radius of the actual tube used [i.e., R = 0.2185 in (5.55 mm)]. The
main conclusion that can be drawn from the results of analysis is that instability first occurs
after the pressure maximum. In spite of some differences in the material properties used in
the calculations, this conclusion is congruent to those of Shield (1972) and Haughton and
Ogden (1979).
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A sample of the results from the bifurcation analysis is shown in Fig. 10. Figure lOa
shows the position ofthe first four bifurcation points on the trivial P-A2 responses, calculated
for five values of prescribed axial loads. The tube analyzed had a length of LIR = 30. In
each case, the first bifurcation point is seen to occur soon after the attainment of the pressure
maximum (identified by " /\ "). Subsequent bifurcation points can be found, at progressively
higher values of A2' by suppressing the existence of the preceding ones. The corresponding
bifurcation modes are symmetric about the tube mid-span and have an increasing number
of axial waves. This was found to be true for all values of axial load considered.

The initial length of the tube is an important geometric parameter affecting instability.
Its effect is illustrated in Fig. lOb, which shows the position of the first bifurcation points
for various tube lengths and the same values of prescribed axial load. For a very long
tube (LIR = 104

), the first bifurcation is almost coincident with the pressure maximum
(Pill = 0.2165). This was found to be true for all values of tension considered. Reduction
of the tube length delays the onset of instability to points downstream of the limit pressure.
The length also affects the closeness of the bifurcation points. For a very long tube, many
buckling modes are clustered together around the limit load. For shorter tubes, they occur
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at increasingly greater 22 intervals. For example, a detailed analysis carried out for a tube
of length L/R = 104 revealed that the 22 values at which the first and tenth bifurcation
points occurred differed only in the sixth significant figure.

The closeness of the bifurcation modes may be one of the factors which leads to the
initiation of bulges at almost any point along the length of the tube. ClearlY,the presence
of imperfections in the tubes used is another factor which influences the observed behavior.

The shape of the first bifurcation mode calculated for a tube of initial length L/R = 15
is sketched in Fig. lla. The mode causes an expansion of the central part of the tube and
a contraction at the ends. This mode shape is the same for tubes of all lengths. Thus, at
least qualitatively, it can be seen that the tube bifurcates into a configuration which leads
to accelerated deformation in the central part and reduction of deformation in other parts
of the structure.

We conclude this section by observing that almost all the characteristics of the bifur
cation instabilities mentioned have also been observed in analyses of instabilities leading to
necking of bars in axial tension (see, for example, Hutchinson and Miles, 1974).

Localization/propagation of bulge
The method outlined in the analysis was used to calculate the deformation histories of

tubes of various geometries. The major characteristics of the results are illustrated in
Fig. 11. The tube analyzed had a length of LIR = 15. Motivated by the results from the
bifurcation analysis, only axisymmetric deformations which are also symmetric about the
tube mid-span were considered. An appropriate measure of the overall (mean) deformation
of the structure is the volume enclosed by the deformed membrane. Figure 11 a shows the
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Fig. lla. Calculated pressure-volume response and corresponding sequence ofconfigurations during
initiation of bulge.
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calculated pressure-volume response and the corresponding tube configurations during the
early stages of the initiation of the bulge. Subsequent configurations and the corresponding
pressure-deformed length responses are shown in Fig. 11b. Figure 12 shows a more complete
pressure-volume response with the corresponding results from the trivially deformed tube.

Following Fig. lla, we observe that the tube initially undergoes cylindrical defor
mations which are very close to the trivial solution. However, the radially fixed end condition
at Z = L causes a small, but finite, deviation from the cylindrical shape. The deviation
takes the form of a very small, gradually varying curvature along the length of the tube.
The end restraint results in a slightly higher response than the trivial one. In addition, the
structure does not experience a sharp bifurcation of the type calculated in the previous
section. The limit pressure on the actual response is marked in Fig. lla with" v ", and is
seen to precede the limit pressure of the trivial solution (marked with" /\ "). Soon after the
limit pressure, a sharp "cusp" develops in the P-v response. Some insight into the causes
of this cusp can be gained by examining the corresponding local deformation (say A. 2) at
Z = 0 and at Z = O.8L.

The difference in deformation induced at the two points is very clearly illustrated in
Fig. 13. Point A undergoes substantially less deformation than point C because of its
proximity to the end constraint. When the limit pressure is reached and surpassed, the
central section of the tube, which is already more deformed, experiences an accelerated
radial growth. The ends never reach the maximum due to the end constraint. Thus, as the
pressure starts to drop, they "unload". In summary, after the limit load, part of the structure
experiences an increase in deformation and part of it a decrease. This is clearly seen in
configurations 4-10 in Fig. lla and is directly responsible for the initial appearance of the
bulge.

Propagation Pressure

(
10050a 150

-%0
Fig. 12. Calculated pressure-volume response compared to that of cylindrical deformation.
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Fig. 13. Pressure-radial stretch ratio response at points A (2 = 0.8£) and C (2 = 0.).

Clearly, this sequence of events is not possible without the development of a load
maximum. It would thus seem that a necessary condition for localization to occur is that
the response has a limit load. This turn of events leads to a reduction in the enclosed
volume in the cylindrical sections and an increase within the central part of the tube. In the
particular case shown in the figure, the experienced decrease in volume is greater than the
increase. As a result, the structure initially undergoes a net decrease in volume. This is the
cause of the cusp observed in the P-v response. In a volume control experiment, a jump in
pressure, bridging the cusp, would be experienced; this explains the behavior observed in
the experiments reported earlier.

As the bulge grows, the volume required for continuing its growth becomes larger than
the decrease in volume in the cylindrical ends. Thus, the net volume of the tube must be
increased. Beyond the cusp, the volume increases monotonically while the pressure drops
gradually. The bulge continutes to grow both axially and diametrically as shown in Fig.
11 b. Eventually, it stops growing diametrically and starts spreading axially. This spreading
occurs at a well-defined pressure plateau, and is stable if carried out under volume control.
This continues until the whole length of the tube is inflated to the same diameter (,.1'2 ~ 5.6).
At the same time, the tube increases its length by approximately 4.1 times. This spreading
of deformation at a constant level of load is very similar to the behavior observed in
problems like those of propagating buckles, propagating necks and propagating phase
boundaries as reported in the references given in the Introduction. Inflation beyond this
point results in cylindrical deformations of the tube, as shown in Fig. 11 b. This growth now
requires an increase in pressure. Inflation can be continued until the material fails. The
present analysis was carried out without regard to such material limitations.

The pressure-volume response for the complete analysis is shown in Fig. 12. The
corresponding response for a cylindrically deformed tube is included for comparison. The
latter can be viewed as the fundamental load-deformation response describing the structure,
while the former is the actual response expected to be seen in a laboratory test of the
structure.

For this particular case, the propagation pressure calculated from various types of
analyses was as follows:

Complete membrane analysis
Maxwell construction: membrane
Maxwell construction: thick-walled tube
Experiment

0.1229
0.1227
0.1262
0.123
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Fig, 14, Pressure--volume responses for tubes of different lengths,

Effect of tube length
The initial length of the tube was shown earlier to affect the bifurcation of the trivial

solution. The effect of length on the stability of a tube with end restraints is illustrated in
Fig. 14. The initial parts of the P-v responses of tubes with L/R of 10, 15,20,30 and 104

are shown. Initially the pressure and volume increase monotonically. The tube length has
a relatively small effect on this part of the response for the range of values considered.
However, the volume at which the maximum pressure is achieved (marked with" v") and
the size of the cusp that follows are significantly affected by L/R. The shortest of the five
tubes analyzed develops a pressure maximum at the smallest value of vivo. Following the
maximum, the response first experiences a very gradual decrease in pressure followed by a
sudden pressure drop. The latter is associated with the initiation of the bulge. The delay
between the maximum and the initiation of the bulge is similar to the delay seen earlier
between the limit pressure and the bifurcation point for cylindrically deformed tubes of
finite length. In this case, the development of the bulge proceeds with a monotonic increase
in v. The tube length is such that the increase in volume in the bulged section is larger than
the decrease in volume experienced elsewhere.

As the length of the tube increases, the limit load occurs at a larger value of volume.
At the same time, the delay between the maximum and the instability is reduced (much like
the results from the bifurcation analysis). For L/R ~ 15 a cusp develops in the response
following the onset of instability. The size of the cusp grows with L/R for the reasons
already given.

A very long tube (L/R = 104
) was analyzed in the following approximate fashion. The

inflation of a tube with L/R = 50 was numerically analyzed in the fashion described. A
representative section, away from the two ends of the tube (2 = 0.6L), was used to obtain
the local P-v response. This section was chosen because it was found to undergo cylindrical
deformations. The volume change of this representative sample was multiplied by an
appropriate constant factor. This was chosen to correspond to adding a uniformly deform
ing section at that point to increase the initial length to L/R = 104

. This approach enabled
us to calculate the response shown in Fig. 14. The limit load coincides with that calculated
for the trivial case. The instability is seen to occur at the limit load, much in agreement with
the results of the bifurcation analysis. Initially the volume increase experienced in the bulged
section is relatively small. Most of the tube unloads and, as a result, the unloading follows
nearly the same P-v path as the loading. More significantly, the pressure stops dropping
when the value of the propagation pressure is reached.

In an experiment conducted under volume control on a tube ofsuch length, the pressure
can be expected to suddenly drop from PL to Pp • The change will occur dynamically as the
tube jumps from the cylindrical configuration to one which has a bulge of radius r = A!R
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Fig. 15. Pressure-volume responses for tubes of different lengths.

and of a certain length. The length of the bulge will be such that it accommodates all the
volume reduction caused by unloading the cylindrical part of the structure from PL to Pp .

This illustrates that for long tubes the initial growth of the bulge is very difficult to
control by prescribing a global deformation parameter (the volume in this case). (Com
plicated control schemes which are based on measurements local to the bulge can be
considered.) Thus, we conclude that controlled initiation of the bulge under prescribed
volume is only possible for short test specimens.

The position of the bulge along the length of the tube is almost arbitrary. In practice
the bulge can be expected to occur in the section with the biggest initial imperfections
(thickness, shape, material).

In spite of differences in the bulge initiation mechanism, the pressure asymptotically
drops to the tube propagation pressure for all tube lengths considered. This is demonstrated
in the results presented in Fig. 15. However, for tubes with shorter lengths the minimum
pressure in the response may be higher than Pp •

*'15, !A'1I49

Fig. 16. Initial configurations of bulges in tubes of different lengths and axial loads.
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Figure 16 shows the initial configurations of the bulging tubes for lengths of LIR = 15
and 30. No visible difference in the bulge shapes of the two tubes was detected. This was
found to be true for all tube lengths analyzed. This result confirms the observations on the
subject made from the experimental results presented in Fig. 7.

On the other hand, the length of the first bifurcation mode from the corresponding
cylindrically deformed tube geometry is directly proportional to the tube length. Thus, the
position of the node is, in both cases, approximately at Z = 0.5L as can be seen in Fig. 16.
It can thus be concluded that the bifurcation mode is the initial cause of nonuniform
deformation, but the shape of the bulge which results from the bifurcation is governed by
equilibrium considerations in the vicinity of the bulge. At the same time we repeat that the
sequence of events that would be seen in an experiment is very much influenced by the
length of the test specimen and the way the experiment is controlled.

Figure 17 shows pressure-deformation histories for tubes with LIR = 30. These cor
respond to the results shown in Fig. 13 for a shorter tube. For the longer tube, the effect
of the end restraint is limited to a region close to the end of the tube. As a result, most of
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Fig. 17a. Comparison of calculated A2 values at two points along the tube length for L/R = 30.
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Fig. 17b. Comparison of calculated A1 values at two points along the tube length for L/R = 30.
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the tube initially undergoes cylindrical deformations as shown in the figure. After the limit
load is reached, the deformation in the bulged section grows, whereas the cylindrical sections
experience reduction in deformation. The "bifurcation" into these two types of behavior
occurs very close to the pressure maximum, as illustrated in the figure.

The general type of mechanism described above is similar to that governing necking
instabilities which occur in tension tests on ductile materials (e.g., metals, polymers). The
pressure-volume response in the current problems corresponds to the load-end dis
placement response in the tensile test. The P-A2C response corresponds to the load--A2c
response in the necked region. The similarity can be confirmed by comparing the results in
Figs 8 and 9 of the paper by Chen (1971) to those in Fig. 14 (for ljR = 10) and Fig. 13 of
this paper respectively.

The effect of specimen length on the response does not seem to have been considered
for the necking problems (probably due to the large computational time required). Based
on the insight developed from this study we suggest that in a uniaxial test a very long metal
bar can be expected to break on reaching the load maximum, even if loaded in displacement
control. Unloading in metals is elastic and, as a result, the deformation recovered is only a
small fraction of the deformation induced during loading. However, if the bar is long
enough, the deformation recovered (shortening) from the sections away from the neck,
undergoing unloading, can be larger than the increase in deformation (elongation) in the
necked region. Thus, the load-displacement response of the bar will be very similar to the
initial part of the P-v responses in Fig. 14. [The initial part of a cusp in the load-end
displacement response was reported by Tvergaard et al. (1981) for a plane strain tensile
test of a nonlinearly elastic material.]t A sudden drop in load can be expected, followed,
most probably, by failure. For some polymeric materials, such as high density polyethylene,
the neck will form and propagate much like the bulge described above (see G'Sell et al.,
1983). The specimen length can be expected to have a similar effect on the neck initiation
process as in our problem. The magnitude of the effect will, however, be less pronounced
due to the elastic-plastic nature of polyethylene.

It is interesting to ask whether the shape of the necked region for elastic-plastic
materials is equally insensitive to the specimen length as the problem analyzed here.

Effect of tension
Axial tension has the effect of lowering the pressure required to inflate the tube. The

pressure maximum and minimum in the trivial response occur at lower values (see Fig. 7
in Kyriakides and Chang, 1990). The actual response is similarly affected by tension. Figure
18 shows a set of responses corresponding to tubes of various lengths, all of which were
inflated in the presence of an axial load of F/J.lA = 1.149. All features of the responses are
the same as those of the case with F = 0, discussed in Fig. 14. The limit pressure (trivial
case) for this case is PdJ.l = 0.1626 and the propagation pressure Pp/J.l = 0.1052. The
corresponding values for F = 0 were PL/J.l = 0.2165 and Pp/J.l = 0.1229.

Figure 19 shows a set of calculated P-v responses for a tube of length L/R = 27.5 for
various values of axial tension. The results confirm the characteristics described above. It
is interesting to observe that the size of the cusp in these responses is reduced as the tensile
force is increased.

As mentioned in the experimental section, the shape of the bulge is substantially altered
by tension. A set of bulge configurations calculated for a tube of length L/R = 15 inflated
in the presence of an axial load F/J.lA = 1.149 is shown in Fig. 15 together with those from
the case with no tension. The difference in the two sets of profiles is quite clear from the
figures.

Figure 20 shows a comparison of the bulge profiles at A2c = 2.70 for four different
values of axial force. This comparison corresponds to the one presented earlier in Fig. 7
from experimental results. The predictions are in good agreement with the experiments.
The profile of propagating bulges is also affected by tension. The presence of tension reduces

t Pointed out by V. Tvergaard.
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the diameter of a propagating bulge and increases the length of the transition region as
demonstrated in Figs 13,15 and 16 of Kyriakides and Chang (1990).

The experimental P-)'2C responses presented in Fig. 6a were reproduced numerically
and the results are shown in Fig. 6b. Again, the comparison between experiment and
analysis is quite good.

Effect of imperfections
The manufacturing process can induce small deviations in wall thickness, and in the

diameter of the tube. In addition, the material properties can vary along the length of the
tube (this can result from improper initial preparation of the rubber, for example). The
consequences of such imperfections were analyzed by considering the variation of these
quantities to be axisymmetric. Figures 21 and 22 show a sample of the imperfection
sensitivity study in which the tube radius was assumed to vary as follows:

R(Z) = R[1+ Wo~Z)J. (16)

.32

p
Ii

Type I

.24 w./R

2 3 5

Fig. 21. Pressure-volume responses for various imperfection (type I) amplitudes.
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Fig. 22. Pressure-volume responses for various imperfection (type II) amplitudes.
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Two different forms of wo(Z) were considered as follows:

Type I

wo(Z) = wo(cos 2kL-l) sin kZ+sin 2kL(1-cos kZ)]

where k is the first eigenvalue of the trivial problem calculated from (A3) ;

Type II

wo(Z) = Wo e-{i(Z/L)2 ({3 = 3 In 10)

1107

(17)

(18)

which is commonly used for problems experiencing localization (e.g., Chen, 1971; Tvergaard
and Needleman, 1980).

Figure 21 shows P-v responses for tubes of length LjR = 30 with imperfections of
Type I and various amplitudes (wojR). In general, the effect of the imperfection on the limit
pressure is small. Figure 22 shows similar results for Type II imperfections. The conclusions
are the same. Similar results were obtained for imperfections in wall thickness and in
material properties with the axial distribution as given in (17) and (18).

Thus, we conclude that, although imperfections will, in general, influence the position
oflocalization, they do not cause significant reduction in the maximum load ofthe structure.
The propagation pressure is equally unaffected by imperfections. Similar insensitivity to
initial imperfections was observed in necking instabilities.

The effect ofmaterial properties
In order to demonstrate the effect of material properties on the bulge instability the

material constants in the Ogden strain energy density function (1) were varied as follows:

2

W = L Jln (A~n+A~n+(A'IA2)-"n-3),
n= \ (Xn

Jl = HJl\(Xl +Jl2(X2) = 60.4 psi (416 kPa),

JlI = 89.4 psi (617 kPa), (XI = 1.30. (19)

Jl2 was varied between 0.57 and 1.42 psi and (X2 was calculated from the second equation in
(19). The geometry of the tube was kept the same as before.

The nominal stress-axial stretch relationships obtained for five different values of Jl2
are shown in Fig. 23. For the parameters used Jl2 = 1.42 psi is approximately the largest
value for which the uniaxial stress-stretch response is monotonically increasing. The nomi-

CT

~

t 15

'0

5

- Wfrom eq (19)
---- Wfrom eq (2)

1.42

0"",~..I---L2--'--3.L.---L._....L4--'--5.L.---L.----'6

-x

Fig. 23. Nominal stress-stretch relations obtained for different values of Jl.2 in eqn (19).
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Fig. 24. Pressure-volume responses for cylindrical inflation oflong tubes with different strain energy
density functions.

nal stress-axial stretch relationship derived from the experimental measurements [eqns (l)
and (2)] is shown with a dashed line in the same figure.

Each set of these material properties was used to calculate the pressure-volume
response for cylindrical inflation of long tubes (trivial response). The results are shown in
Fig. 24. For /12 = 0.57 psi the pressure-volume response has a relatively small jump in
volume at P ::::: 0.23/1 but otherwise the pressure increases monotonically with volume. For
/12 = 0.71, 0.78, 0.85 and 0.92 psi the response has a distinct limit load followed by a
drop to a local pressure minimum. The response grows monotonically after the pressure
minimum. The value of the pressure minimum and the slope ofthe response after it decrease
as /12 increases. For /12 1.42 psi the pressure monotonically decreases after the pressure
maximum.

Clearly we can expect that for ti2 = 0.71-0.92 psi the tube will develop a propagating
instability. The propagation pressures predicted from the Maxwell construction for the
different values of ti2 are given in Fig. 25.

The material properties given in (19) were used in the axisymmetric membrane analysis
in order to illustrate the effect of the material properties on the localization and propagation
instabilities that occur. The tube analyzed was closed at both ends and had a length of
L/R = 15 and F = O. The pressure-length responses calculated for each value of /12 are
shown in Fig. 26. For ti2 = 0.57 psi the pressure rises to a value ofapproximately P ::::: 0.23/1

.24

Pp

f '"
16 0

'"
'"

.06
F=O
Wfrom eq (191

.67o .9

---+'>

Fig. 25. Propagation pressures for different values of /12 in eqn (19) (Maxwell construction).
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Fig. 26. Calculated pressure-<!eformed length responses for different values of Il,.

and remains relatively constant until the length increases to approximately 1.6L. Following
this, the pressure increases monotonically with length. The structure does not experience
localization. The tube deforms in a cylindrical fashion, as shown in Fig. 27. A similar
behavior can be expected for values of 112 < 0.57 psi. For 112 = 0.71, 0.78, 0.85 and 0.92 psi
the pressure-length response is characterized by a pressure maximum followed by a drop
to a pressure plateau. The value of the pressure plateau decreases as 112 increases. In these
cases a bulge is initiated at the pressure maximum. The bulge propagates along the length
of the tube while the pressure remains constant. The axial deformation induced by the
propagating bulge increases as the value of 112 increases. The shape of the propagating bulge
profile also varies with 112. This can be seen by comparing the configurations calculated for
112 = 0.71 psi in Fig. 27 with those presented in Fig. lib.

L/R=15
F=O

o 1.0 1.4 1.8
---" tiL

2.2

Fig. 27. Calculated configuration sequences of inflated tubes with different strain energy density
functions [Was in eqn (19)].
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For 112 = 1.42 psi (and larger values) the tube experiences localization. At P ~ 0.214112
a bulge develops and starts growing. However, in this case the pressure monotonically
decreases with deformation and as a result the bulge never propagates. The bulge is seen
to grow in a nearly radial fashion in the sequence of configurations shown in Fig. 27.
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APPENDIX

The material constants eli in (15) have the following values:

C(j = W22 '

Cl2= WII ,

C(4 = Wll ,

W,
C(6=~'

A2

W,
'17 =------=---,

A,

(AI)

all evaluated at specific values of ;., and "-2 which satisfy (14). The second term on the right-hand side of (15) is
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a constraint requiring that the volume enclosed by the tube is not changed by the applied perturbation. The onset
of instability is given by the nontrivial solution of the Euler differential equations ofQsolved with the appropriate
boundary conditions. These can be shown to be as follows:

with

w(O) = 0, u(O) 0, w(2L) = 0

and

fc
2L W I ).2
~dZ+ - .,-u(2L) = O.

o R 211. 1

The eigenvalues are obtained by solving the following equation

tan kL (kL)r

where

and

(A2)

(A3)

Thus a sequence of distinct eigenvalues exists very much in accordance with more conventional stability problems
in structural mechanics. The bifurcation mode is given by

w = C[(cos 2kL-l) sin kZ+sin 2kL(I-cos kZ)].

u(Z) can be evaluated from (A2) and (A4).

(A4)


